DESIGN TYPES &
DESIGN CARDS

ARGUMENTATIV ZUR BESTEN DESIGN-ENTSCHEIDUNG

Christian Rehn: Matthias Wittum:
B Software Engineer

B Head of Source Center

H www. principles-wiki.net | www.design-types.net

B www.design-types.net

http://www.design-types.net/
http://www.principles-wiki.net/
http://www.design-types.net/

Viele Wege fuhren nach Rom...

10 - Selva Candida); '] . .
]

Via MontigTiburtini;
\’.1}7 Lanciant!
» I ’,
Boccea)
Stazione ."‘.'t'.lu.'(.'r.'u

ia)

Villa Doria" 4

fella Stazione Aurelic
Pamphilj |

Riserva
Naturale
Valle del
Casali
Via Por‘luens.é_ - Fiumicing

Siserva

‘aturale

la Tenuta ‘
Massimi y

Ag1e

s\

/ 5P3e

10 ———Magliana Vecchio;
S===Parco de’ Medlci
Humicing - EUR)

Parco Natur
Regionale

SR148
Viale Cdr.’a Levi
. GRA (_‘n.r rm-’ex chia
rrurcn'l.ﬂr' Uscita 24 |
250 P N = w24
Fonte Laurer\tnna

Mostaccians === 4 (Ardetting)
4
-~

Spinaceto Castel di Leva

‘
Tor de' Cencl

for de’ Cenci; Spinaceto sud

Vi Palmird’ Togliottie="
- ——

Appia Antica |

-

rercu o yune g /
dell'Aniene
. - ~ - :]

.'-"’/ e -
Saslunghez
T
TonCervaro

Uffici Finanziari

| 2 .
| Villaggio |
A%0 Colle Monfortani

Prato Fiorito
Prenesting Bis

Jorrenova

Tor Bella Monaca Borght
'\—l—"'_.# - V’._‘.
G|ard|nelll Villaggio Breda

7 | Villa Verde
La Romaninag
Y via Antalisei

Romanina
Giardini Tor
si Mezzavia

\ i

Giecna 5mnrAndre¢
Uscitgn 23 ,Aup-u,.l L"asa'. Morena
W N A

Vermicino

Morena Centroni
TN
ValleCopella

Ponte Linari

Aéroporto
di Roma-

Ciampifio Grottaferrat:

- . J

Santa Ma.'ria

Szenario

& IRESTL

Ein vollig fiktives Szenario

Eine Gruppe Enfwickler diskutiert, ob eine neue
Schnittstelle per EJB oder REST angeboten werden soll.

Technische Diskussion: ,,die historische Variante*

Technische Diskussion: ,,die historische Variante*

Aber wenn wir das so
machen...

Und dann konnten wir
noch...

Kombiniert bedeutet das
dann...

Andererseits sollte man
immer bedenken...

Wir haben schon
immer EJB verwendet.
Warum jetzt REST?

Ich hab das schon oft mit
REST gemacht. Das
ist besser. Vertraut mir!

Das fuhlt sich irgendwie
nicht richtig an.
Das kann nicht gut sein!

Uberreden oder iberzeugen?

Wir sind nicht die ersten...

John Paul Stapp und Edward A. Murphy

Kontrare Prinzipien

RoP 1

Design Cards — Argumentkarten

»Simple means
readable, maintainable,
and less error-prone.

Overengineering is harmful.«
Complex code typically contains more bugs
and it has to be maintained (maybe even
by other people). To others it may seem
obscure which can lead to frustration and
bad code quality. Striving for simplicity
means to avoid inheritance, low-level opti-
mization, complex algorithms, fancy (lan-
guage) features, configurability, etc.

TRoP, 1CF, LNFR, 1MP
OF

design-types.net

LC: Low Covupling

»Tight coupling creates
ripple-effects and makes
the code less maintainable.«

If you decouple, you don't need to know
internal details about other parts of the
system. Furthermore it makes you inde-
pendent from changes in those other parts
and maybe even supports reuse. So better
use additional layers, indirection, depen-
dency injection, observers, messaging, etc.

=]
IR RN
[=] %

design-types.net

CF: Customer Focus

»This is not what
the customer pays us for!«

If something is not requested, there has to
be a very good reason to do it. Anything in
addition costs additional time (also for re-
moving or maintaining it). It creates addi-
tional risk of more bugs and makes you

T ible for it. Conti ly r b
what was requested e.g. by looking into
the requirements or asking the customer.

ERAE
3

1PoQ, TEaO, TYAGNI o

design-types.net

»Avoid possibilities
for something to go wrong
or to get misused.«

If there is a possibility for something to
be used in the wrong way (like supplying
parameters in the wrong order), it will
eventually happen. So better avoid possi-
ble future bugs by using defensive pro-
gr ing, final, i bility, a

5 & iding duplication and

complexity.

design-types.net

Consequences

»What will happen
if we make
the wrong decision?«

Think about possible impacts, chances of
occurrence, and possibilities to revert. If
the consequences are not bad at all, then
it might be better to shorten the discus-
sion. If the consequences are severe, there
should be some means of mitigation in
place. In any case think about the conse-
quences of a decision.

design-types.net

Design Cards — Moderationskarten

»We cannot agree.
Let's get some help!«

Sometimes a discussion gets stuck. In
these cases it is often advisable to ask an-
other colleague for an opinion or media-
tion. Usually a colleague who hasn't al-
ready participated in the discussion, adds
a new, unbiased perspective.

design-types.net

Technische Diskussion: , kartengestutzte Argumentation®

Technische Diskussion: , kartengestutzte Argumentation®

Bei EJB muss ich nur
eine Annotation setzen.
Das ist viel einfacher
als bei REST.

REST ist einfach, weil es
sich leicht debuggen lasst.

Technische Diskussion: , kartengestutzte Argumentation®

Wir sollten nicht ohne Grund
eine neue Technologie
Die Kommunikation ist einfihren, wo uns die
expliziter. Einfach HTTP. Erfahrung fehlt.
Da kann weniger schief
gehen, als wenn viel Magic
da ware.

Weniger schief gehen?
REST ist erstmal anders
und man kann viel falsch
machen.

Technische Diskussion: , kartengestutzte Argumentation®

b
Genau. Mit REST kdnnen
wir unsere API viel flexibler
versionieren.

Ein Grund ist die lose
Kopplung.

Technische Diskussion: , kartengestutzte Argumentation®

Jetzt wo alle Argumente auf
dem Tisch sind: Lasst uns
da mal ne Nacht draber
schlafen!

Erste Beobachtung

Die Entwickler argumentieren
Klarer und nachvollziehbarer

Ein Argument leitet zum nachsten Argument
oder Gegenargument uber

Einsatzgebiete

B Konzeption

Pair Programming

Code Reviews

Gamification

Lerneffekt

Die Karten im Detail

KISS: Keep It Simple Stupid

»Simple means
readable, maintainable,
and less error-prone.

Overengineering is harmful.«
Complex code typically contains more bugs
and it has to be maintained (maybe even
by other people). To others it may seem
obscure which can lead to frustration and
bad code quality. Striving for simplicity
means to avoid inheritance, low-level opti-
mization, complex algorithms, fancy (lan-
guage) features, configurability, etc.

EL5E
TRoP, TCF, INFR, iMP

OF

design-types.net

design-types.net

Wir haben noch gar keinen Konsens
gefunden!

Die Dimensionen unserer Entwickler-Typologie

VS. Powerful

VS. Concrete

Pragmatic j%&2

&8 Technologic

Die konkreten Auspragungen

Simple me:
= keeping it s
= omit unnece

= prefer explid

Abstract means:

= think in concepts and abstractions

» focus on the big picture and interaction
= know about the consequences of a cha
= focus on real world models

= etc.

Pragmatic means:

= fulfill requirements asap

= use only things that guarantee a value
» omit unnecessary things

» bring others down to earth

= etc.

Robust means:

= protect applications agg
= use standards for an ob
= avoid magic and complé
= use proven solutions w
= etc.

I means:
| and generalized solutions
y and Extensibility by foresighted design

solutions instead of frequent code changes

g complexity

S.
and more productive technologies
pgy for being more competitive

Ausprobieren und lernen > www.design-types.net

BERE;

Learn More Assess Your Colleagues

Test Yourself

Simple Simple
Abstract Abstract
Idealistic Pragmatic
Technologic Robust

http://www.design-types.net/

Ein Beispiel-Ergebnis

»

SAPR: The Construction Manager

Description

The Construction Manager loves to work like on a construction site. There
is a plan and everybody works hand in hand to reach the aimed goal. He
focuses on working solutions that are built on proven technologies. This
ensures that the result will stand the test of time. The most matching
motto is: Getting things done. He rather implements by himself than
choosing the wrong and maybe unstable framework. He knows very well
about his abilities and has reservations about foreign technologies that did
not proof their maturity over a certain period of time. He also focuses
more on the interaction of particular modules instead of having too many
sophisticated and complex constructs in his design. He prefers simple
craftsmanship which tells him not to finish before a certain level of
robustness has been shown by manual or automated tests.

Your designs are

Stable and reasonably planned without unnecessary complexity
Programming is

Like managing a construction site. Somethiong has to be built.

Abstrac

Pragma

E Robust

Principles you p
KISS, MIMC, RoE
Principles you r
GP, PSU, TdA/IE
Strengths
® Fast in del
® Code and ¢

Suggestions
® Keep your
on your ow
Don't get
Keep your
continuous
Don't forge
speed.

Your Design Type: The Construction Manager (SAPR)
. Simple E]Abstract

This means you prefer simple, straight- This means you always have the big picture
forward solutions in mind

[&] Pragmatic [Robust

This means you like getting things done f. s means you strive for stable and robust
oftware

Your designs are: Programming is to you:

Stable onably planned without Like managing a construction site.

unnecessary complexity Something has to be built

Dimension overlap Type overlap

SCPR SAPRI SAIR

design-types.net i

Like it? Print it!

Technische Diskussion: ,,Diskutieren mit Kontext*

Der nachste Tag...

TQChniSChe DiSku ion: ,,DiSkUtie In einem halben Jahr kommt

Ja, aber das ist doch bestimmt eine neug .
Anforderung und wir mussen

viel zu kompliziert! , ; :
& m 17 e FellsEn JaTa die Schnittstelle erweitern...
will und muss ich das
n@A auch noch verstehen. Lasst uns bitte die

Deadline nicht

% Pragmatic . > 2) vergessen. Wir sollten

uns nicht verzetteln!

Pragmatic

Technische Diskussion: ,,Diskutieren mit Kontext*

A Abstract |

ist mir eine lose
Koppelung wichtig.

Powerful

Pragmatic

Mit REST konnen wir auf die bereits
bestehende Web-Infrastruktur
aufsetzen und mussen z.B. Caching
nicht neu implementieren. Das macht
uns schneller.

Was nehmen wir mit?

B Gute und nachvollziehbare Argumente
» Design Cards

Gegenseitiges Verstandnis fur unterschiedliche

Positionen
Design Types | » Design Types

Um Blockaden oder Patt-Situation auflosen zu
konnen, benotigt man Exitstrategien
» Moderationskarten

Gibt es noch mehr?

Design Matrix

Description of design challenge Result of design decision
Name: | | Date: |:| | o Approved O Rejected |
Decided by: | |
Topic overview Stakeholder: | |
&
Solution details: Summary:
O Is the solution easy to understand (even in th O Is the solution foresighted enough?
future)? Is there a solution that is easier? O Does it take non-functional requirements o
% O Does it avoid ,clever magic and overly into account? o
=] generic approaches? O Is the solution generic and reusable? %
» O lsthe solution explicit so there is less room fo O Which parts will change in the near =
misinterpretation or for ugly surprises? future? Which ones continuously? -
O dcr therauinragiqstrdfestuiosuye can @il me = - - - e o o == ARA Shodd cfay cfablaavhab flaxiblal:
—
; Ziel: Systematlsche und strukturierte
- @)
g Herangehensweise
w —_— — — —— — — -
= on its own? — "the'same breath? o
O Are modules cohesive and is coupling low? O Can the solution grow naturally over time? ®
(e.g. allow further changes/refactorings)
O Does the solution provide value early on? O Is this the right solution?
© 0O Does the solution really address the O Is it consistent with the rest of the system? —
© customer’s goals/use cases? O |s ensured that there are no workarounds or %
g, O Does the solution really fit to the timeline? bad decisions that will produce serious “a—’_
©® 0O Can we use already existing Code problems later? =
o (snippets, libraries, services)?
O Is the solution hard to misuse? O Is there already an existing technology or
O Are the chances for something to go wrong library that helps us? 5'
2 minimized? O Is the solution state-of-the-art? =)
9 O Are standards used and adhered to? O Is the solution a technologic progress? =
o O Are used technologies/libraries stable? o Can we get rid of legacy code? o
O Do all involved people have the necessary %
knowledge?

© by design-types.net

Stand der Dinge

B Design Types
[1 Fertig
Design Types | [0 > 2300 Teilnehmer bisher
B Design Matrix
[1 Fertig
[1 Aktuell Feedback durch Pilotgruppen
[1 Demnachst zum Download

B Design Cards
[1 26/54 Karten fertig (Basic Set)
[1 Online-Karten gerade im Entstehen
[1 Aktuell Feedback durch Pilotgruppen

pesign Cargs

Design Cards — lllustrationen

»Progress must not be ignored
in a competitive environment.«

New technology is not only motivating but
also comes with benefits like more fea-
tures, more performance, better maintain-
ability, and fixed bugs. Furthermore old
technology won't be supported for much
longer and new people don't know the old
stuff anymore. Continuously challenge
existing solutions by evaluating alterna-
tives.

EEE
@) e s
e

design-types.net

»Progress must not be ignored
in a competitive environment.«

New technology is not only motivating but
also comes with benefits like more fea-
tures, more performance, better maintain-
ability, and fixed bugs. Furthermore old
technology won't be supported for much
longer and new people don't know the old
stuff anymore. Continuously challenge
existing solutions by evaluating alterna-
tives.

design-types.net

»Bad quality
kills us in the long run!«

It may be faster now but we need to be
fast tomorrow, too. Bad quality frustrates
maintainers, makes fixing bugs harder and
leads to huge efforts for changes. This
often starts by being careless once. Don't
let a vicious circle begin. Use metrics,
adhere to the architecture, have a high
test coverage, apply code reviews and
continuous refactoring. Don't be lazy.

=
i 1. 1600, cr [
[=] =

design-types.net

»Bad quality
kills us in the long run!«

It may be faster now but we need to be
fast tomorrow, too. Bad quality frustrates
maintainers, makes fixing bugs harder and
leads to huge efforts for changes. This
often starts by being careless once. Don't
let a vicious circle begin. Use metrics,
adhere to the architecture, have a high
test coverage, apply code reviews and
continuous refactoring. Don't be lazy.

[E4[E
ucss ic.seao e B

(Ol

design-types.net

DRY: Don't Repeat Yourself §%5%

»Duplication makes changing
the code cumbersome
and leads to bugs.«

Having a functionality more than once
means to update or bugfix it at every oc-
currence which is more error-prone and
more effort. Refactorings like method or
class extraction may help as well as in-
heritance, polymorphism and some
design patterns.

[E] 33]
=¥

design-types.net

DRY: Don't Repeat Yourself §¥=%

»Duplication makes changing
the code cumbersome
and leads to bugs.«

Having a functionality more than once
means to update or bugfix it at every oc-
currence which is more error-prone and
more effort. Refactorings like method or
class extraction may help as well as in-
heritance, polymorphism and some
design patterns.

[E 33
0Q, 1ML B]
vt

design-types.net

Christian Rehn

Wer informiert bleiben
mochte, noch Fragen,
Anregungen 0.a. hat, kann
uns gerne eine Mail
schreiben:
email@design-types.net

Matthias Wittum

Anhang

Statistiken — Veranderung durch Berufserfahrung

simple
/ robust

Statistiken — Verteilung der Typen

PAPT PCIR PCIT PCPR PCPT SAIR SAIT SAPR SAPT SCIR SCIT SCPR SCPT

Statistiken — Haufigkeit der Antworten

47
48
45
44
Bw library.
42 ionality has its place, every layer its purpose.
ature to be accomplished.
ies.

needs, automate processes, etc.

in the long run.
ections and needs to be trimmed every now and then.
ect orientation.
aries are annoying and new technolegies are often just hyped.
net. They can be extremely helpful and boost development speed.
es that do not have a substantial advantage.
k in terms of abstractions, concepts and models.

de.
here is a good reason to do so.
considered before and during implementation.
ms. Use an abstraction layer to do so.
D% solution next month.
cts. Don't misuse frameworks, patterns and concepts (e.g. don't say REST when it's actually not’
Esign strategies, and languages. Even if you won't use it in practice, it's good to broaden your herizor
gs.

s no good identifier, it is a sign that the abstraction is wrong.
cts like generics, annotations, lambdas, etc. are there for a certain reason and should be used in this ¢
sy as it's always a small step. Waiting for too long makes upgrading hard and painful when it becomes

tion.
, closures, operator overloading, aspect-orientation, reflection, etc. are powerful instruments that bring L
exible and configurable at runtime so you don't have to change your code continuously.
ode and extracting redundancy.
ithout completely understanding it.
has its place where it belongs. It should be implemented exactly there.
al that a coding style changes over time. This just reflects that developers are able to learn something new.
t writing code, not about drawing pictures.
ot; concepts like "Birthday’, ‘CustomerNumber’, and "‘EmailAddress’ should be represented by a class.
ardization: Use standard technologies, standard architectures, standard coding styles, standard formatting, standardized «
things have to be implemented. Technical completeness and symmetry have no value on their own.
tware means to explain the classes and methods.
should represent a real-world concept.
es it is necessary to omit certain time consuming tasks like unit tests, consistent exception handling or documentation.
design combines precise structure with symmetry.
e generators, DSLs, build profiles and configurable libraries can lift you to a higher level of effectiveness.
ple brute-force solutions may be slow but will work in the first place.
c: Technology evolves. We should do so, too.

| | | | | |
10% 20% 20% 40% 50% 70%

O =2MNWAMOD-= W

